A gradient‐free distributed optimization method for convex sum of nonconvex cost functions

نویسندگان

چکیده

This paper presents a special type of distributed optimization problems, where the summation agents' local cost functions (i.e., global function) is convex, but each individual can be non-convex. Unlike most algorithms by taking advantages gradient, considered problem allowed to non-smooth, and gradient information unknown agents. To solve problem, Gaussian-smoothing technique introduced gradient-free method proposed. We prove that agent's iterate approximately converges optimal solution both with probability 1 in mean, provide an upper bound on optimality gap, characterized difference between functional value value. The performance proposed algorithm demonstrated numerical example application privacy enhancement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Optimization of Convex Sum of Non-Convex Functions

We present a distributed solution to optimizing a convex function composed of several nonconvex functions. Each non-convex function is privately stored with an agent while the agents communicate with neighbors to form a network. We show that coupled consensus and projected gradient descent algorithm proposed in [1] can optimize convex sum of non-convex functions under an additional assumption o...

متن کامل

Cutting-Planes for Optimization of Convex Functions over Nonconvex Sets

We derive linear inequality characterizations for sets of the form conv{(x, q) ∈ R×R : q ≥ Q(x), x ∈ R − int(P )} where Q is convex and differentiable and P ⊂ R. We show that in several cases our characterization leads to polynomial-time separation algorithms that operate in the original space of variables, in particular when Q is a positive-definite quadratic and P is a polyhedron or an ellips...

متن کامل

MOCCA: Mirrored Convex/Concave Optimization for Nonconvex Composite Functions

Many optimization problems arising in high-dimensional statistics decompose naturally into a sum of several terms, where the individual terms are relatively simple but the composite objective function can only be optimized with iterative algorithms. In this paper, we are interested in optimization problems of the form F(Kx) + G(x), where K is a fixed linear transformation, while F and G are fun...

متن کامل

Convex Optimization with Nonconvex Oracles

In machine learning and optimization, one often wants to minimize a convex objective function F but can only evaluate a noisy approximation F̂ to it. Even though F is convex, the noise may render F̂ nonconvex, making the task of minimizing F intractable in general. As a consequence, several works in theoretical computer science, machine learning and optimization have focused on coming up with pol...

متن کامل

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Robust and Nonlinear Control

سال: 2022

ISSN: ['1049-8923', '1099-1239']

DOI: https://doi.org/10.1002/rnc.6266